数学の質問 その6
最新 最初 全 
#299 [名前なし]
:09/10/02 23:07
:SH903i
:IR8lXUfg
#300 [なォ]
質問の答えは
ある問題を解く上で
必要なものなので
約分をせずにあの形
での答えを頂けたら
嬉しいです。
説明不足で
すみませんOK
:09/10/02 23:20
:W62S
:pY8gjUjQ
#301 [ピーマン]
みんな答え教えてあげなよww
>>297もう1度、Cの定義を見直すべき。4321はいらないよー
:09/10/02 23:24
:W41CA
:☆☆☆
#302 [ピーマン]
あ、いらないってのは、ゴチャゴチャするからいらないって意味ね。
:09/10/02 23:27
:W41CA
:☆☆☆
#303 [ピーマン]
あ、でも答えの形出すならそのままがいいのか…
連投すまそ。
:09/10/02 23:29
:W41CA
:☆☆☆
#304 [名前なし]
その答え既に約分してるじゃん。
:09/10/03 00:33
:SO706i
:j9zHJbWA
#305 [名前なし]
質問です。
O(0,0),A(2,0),B(1,2)に対し、OP↑=sOA↑+tOB↑とする。実数s,tが1≦s+t≦3、s≧0,t≧0を満たしながら動くとき、点Pの存在範囲を求めよ。
この問題がわかりません。
解説なども含めて、誰かわかる方お願いします。
:09/10/03 11:10
:PC
:Hd0mIOg2
#306 [名前なし]
O(0,0),A(2,0),B(1,2)に対し、OP↑=sOA↑+tOB↑とする。実数s,tが1≦s+t≦3、s≧0,t≧0を満たしながら動くとき、点Pの存在範囲を求めよ。
条件を整理すると
(A)1≦s+t
かつ
(B)s+t≦3
かつ
(C)s≧0,t≧0
(A)の場合
点Pの存在範囲は直線ABで区切られる2つの領域の点Oを含まない側
(B)の場合
s+t≦3から(1/3)s+(1/3)t≦1…@
OP↑=(1/3)s3OA↑+(1/3)t3OB↑
ここで、3OA↑=OA'↑、3OB↑=OB'↑とおくと
OP↑=(1/3)sOA'↑+(1/3)tOB'↑…A
@Aより
点Pの存在範囲は直線A'B'で区切られる2つの領域の点Oを含む側
(C)の場合
点Pの存在範囲は直線OAと直線OBによって区切られる4の領域のうちの線分ABが含まれる領域
あとは(A)(B)(C)の領域を図示し、それの共通部分が点Pの存在範囲
:09/10/03 11:53
:D902iS
:☆☆☆
#307 [名前なし]
>>306で参考にした公式
OQ↑=αOA↑+βOB↑のとき、α、βがα+β=1を満たすとき点Qの存在範囲は直線AB上
OQ↑=αOA↑+βOB↑のとき、α、βがα+β=1かつα≧0かつβ≧0
を満たすとき点Qの存在範囲は線分AB上
※証明は教科書参考
間違い、わかりにくい点があればご指摘のほどよろしくお願いします。
:09/10/03 11:59
:D902iS
:☆☆☆
#308 [名前なし]
>>306ありがとうございます。
s+tというのはOP↑=sOA↑+tOB↑の式の中でどう考えたのですか?
すみませんが、できればそこまで教えていただけないでしょうか。
:09/10/03 12:11
:PC
:Hd0mIOg2
★コメント★
←次 | 前→
トピック
C-BoX E194.194